Skip to main content

Search Results

Your search returned 5261 results

Abstract: Improved Outcomes Among Children with New-Onset Type 1 Diabetes via the 4T Program

GT. Alonso1, F. Bishop2, B. Frohnert1, B. Lockee3, D. Maahs2, R. McDonough3, K. Panfil3, P. Prahalad2, L. Pyle1, V. Ritter2, L. Waterman1, M. Clements3 1University of Colorado Anschutz Medical Campus...

Abstract: Utilization of a CGM-based Dashboard to Identify At-Risk Patients with Type 1 Diabetes (T1D)

Katie Noland1; Britaney Spartz1; Emily DeWit1, Mark Clements1; Rachel Dixon1; Jaimie Contreras1; Gayla Kutzli1; Andie Kaminsky1; Katelyn Evans1; Jude El Buri1 1Children's Mercy Kansas City Kansas City...

Abstract: Disengagement from advanced technologies in pediatric type 1 diabetes: implications for glycemic control and DKA risk

D. Ferro1, D. Williams1, N. Karwal1, M. Rodrigues1, C. Mullaney2, L. Skrabonja2, B. Lockee1, E. Dewit1, J. Redel1, M. Clements1, R. McDonough1 1Children's Mercy Hospital, Endocrinology, Kansas City...

Abstract: Predicting 90-Day Change in HBA1C with an “Explainable AI” Machine Learning Model Deployed in Clinic

C. Vandervelden1, B. Lockee1, M. Barnes1, E. Tallon2, D. Williams3, K. Noland1, R. Mcdonough1, S. Patton4, E. Dewit1, M. Clements1 1Children’s Mercy Hospital, Endocrinology, Kansas City, United States of...

Abstract: Time from Type 1 Diabetes (T1D) Diagnosis to Clinic-Connected CGM Data is Improving

R. McDonough1,2, S. Tsai1,2, M. Barnes1, C. Vandervelde1, D. Zaharieva3, A. Addala3, S. Patton4, M. Clements1,2 1Children’s Mercy - Kansas City, Kansas City, United States, 2University of Missouri - Kansas...

8 frequently asked questions about breastfeeding and pumping

Breastfeeding may be natural, but that doesn’t mean it comes without questions. Whether you’re breastfeeding for the first time or looking for answers because this experience is different from the last...

Abstract: Preparing for Risk-based Management of Type 1 Diabetes (T1D): Integrating Biomarkers of Performing Diabetes Self-management Habits into a Population Health Dashboard

C. Vandervelden1, B. Lockee1, S. Carrothers1, S.R. Patton2, R. McDonough1, J.M. Lee3,4, M. Clements1 1Children's Mercy Hospital, Endocrinology, Kansas City, United States, 2Nemours Children's...

Abstract: Precision geocoding in a multifunctional diabetes data integration system to support predictive modeling and population health analytics

M. Barnes1, M. Clements1,2 1Children's Mercy Kansas City, Pediatrics, Kansas City, United States, 2University of Missouri-Kansas City School of Medicine, Pediatrics, Kansas City, United States...

Abstract: Assessment of the glycemia risk index as metric for evaluating quality of glycemia in youths with type 1 diabetes

E.M. Tallon1, K. Panfil1, C.A. Vandervelden1, B. Lockee1, D.D. Williams1, M. Barnes1, S. Patton2, C. Schweisberger1, R. McDonough1, D. Klonoff3, M. Clements1 1Children’s Mercy, Endocrinology, Kansas City...

Abstract: Impact of the COVID-19 Pandemic on Disengagement from Advanced Diabetes Technologies Among Racial/Ethnic Groups in the US T1D Exchange Quality Improvement Collaborative

S. Carrothers1, B. Lockee1, D. Williams1, E. DeWit1, R. McDonough1, N. Noor2, T. Alonso3, H. Akturk4, D.J. DeSalvo5, M. Kamboj6, L. Jacobsen7, M.L Scott8, A. Mungmode2, O. Ebekozien2, M. Clements1...

Abstract: Understanding facilitators and barriers to clinic-wide implementation of a population-based tool to identify patients with type 1 diabetes (T1D) at high risk for suboptimal glycemic outcomes

Emily L. DeWit1, Katie Noland1, Sophie MacColl1, Franziska Bishop2, Mark Clements1 1Children's Mercy Kansas City, 2Stanford School of Medicine eldewit@cmh.edu Background/Objective: To gain insights...

Abstract: Baseline quality improvement culture assessment for centers participating in the T1D Exchange QI Collaborative

Ann Mungmode1; Kristina Cossen2; J. Sonya Haw3; Grace Nelson4; Priyanka Mathias5; Nicole Rioles1; Donna Eng6; Ori Odugbesan1; Meredith Wilkes7; Mark Clements8; Sarah D. Corathers9; G. Todd Alonso10; Osagie...

Abstract: Diabetes Device Data in Virtual Clinic Visits: A New Health Disparity?

R. Mcdonough1,2, D. Ferro1,2, B. Lockee1,2, M. Clements1,2 1Children's Mercy Kansas City, Pediatrics, Kansas City, United States of America, 2Children's Mercy Kansas City, Pediatric Endocrinology...

Abstract: The Glycemia Risk Index Correlates with Hemoglobin A1C in Youth with Type 1 Diabetes and Is Elevated in Individuals Who Experienced Diabetic Ketoacidosis

K. Panfil1, C.A. Vandervelden1, B. Lockee1, E.M. Tallon1, D.D. Williams1, S.R. Patton2, C. Schweisberger1, R.Y. Sonabend3,4, D.C. Klonoff5, M.A. Clements1 1Children’s Mercy, Kansas City, United States...

Abstract: Disengagement from advanced diabetes technologies during the COVID-19 pandemic associates with worse short-term outcomes in the US T1D exchange quality improvement collaborative

C. Vandervelden1, M. Barnes1, E. DeWit1, D. Williams1, R. McDonough1, N. Noor2, R. Izquierdo3, M. Greenfield4, C. Demeterco Berggren5, A. Roberts6, H. Hardison2, O. Ebekozien2, M. Clements1 11 Children'...

Abstract: Utilization of a CGM-Based Dashboard to Prioritize Distinct Cohorts of Youth with Type 1 Diabetes

B. Spartz1, K. Noland2, E. Dewit3, B. Lockee2, M. Clements3 1Children’s Mercy Hospital, Endocrinology, Kansas City, United States of America, 2Children’s Mercy Hospital, Endocrinology, KANSAS CITY, United...

Outbreaks, Alerts and Hot Topics: Lawn Mower Injuries

Column Author: Chris Day, MD | Pediatric Infectious Diseases; Director, Transplant Infectious Disease Services; Medical Director, Travel Medicine; Assistant Professor of Pediatrics...

Abstract: Performance of a Clinic-deployed Model to Predict Diabetic Ketoacidosis (DKA) Risk in Type 1 Diabetes (T1D)

C.A. Vandervelden1, B. Lockee1, M. Barnes1, E.M. Tallon1, D.D. Williams1, J. Kohlenberg2, R. Sonabend3, S.R. Patton4, S. Mehta5, M.A. Clements1 1Children’s Mercy, Kansas City, United States, 2University...

Abstract: Exploring Motivation Behind Engagement in Mealtime Bolus Behavior in Adolescents with Type 1 Diabetes (T1D): A Behavioral Economics Approach

E. DeWit1, S. Tsai2,1, M. Clements2,1, B. Spartz1, L. Lartey1, K. Evans1, L. Sainz Y Diaz1, E. Hurley2,1 1Children’s Mercy, Kansas City, United States, 2University of Missouri Kansas City, Pediatrics...

Abstract: Comparative Performance of a Recurrent Neural Network (RNN) and Logistic Regression (LR) Model to Predict Diabetic Ketoacidosis (DKA) among Youth Postdiagnosis with Type 1 Diabetes (T1D)

David D. Williams, Sarina Dass, Jonathon Bass, Susana R. Patton, Sanjeev N. Mehta, Ryan McDonough, Colin Mullaney, Leonard Davolio, Mark A. Clements. Preventing dangerous and costly episodes of DKA is a...