

Thomas Lancaster, MD

Dr. Lancaster, a native of Missouri, received his Doctor of Medicine from the University of Chicago. His residency in pediatrics and his fellowship in Neonatal-Perinatal Medicine were conducted at St. Louis Children's Hospital at Washington University in St. Louis, MO. Dr. Lancaster is board-certified in pediatrics and neonatology. Dr. Lancaster joined Sunflower Neonatology Associates in the summer of 2008 and was named Medical Director at Research Medical Center the following year. At the start of 2019, Dr. Lancaster assumed the role of Medical Director of the Overland Park Regional NICU. He helped lead many program developments including whole body cooling for HIE, a comprehensive neurocritical care nursery for HCA Midwest and an 11 bed Small Baby Unit at OPR. He has spoken at many regional and national conferences on topics related to neuroprotection in the newborn. He is an active member of the Newborn Brain Society and continues his interest in neonatal neurocritical care, including the benefits of neuroprotective strategies for preterm and term infants. When he is not busy with caring for babies he enjoys traveling, reading and spending time with his family.

Protecting our Tiniest Humans: Primum Non Nocere

Thomas M. Lancaster, MD Sunflower Neonatology Associates Medical Director, NICU OPRMC and NCCN

Disclosure

I have no financial conflicts of interest to disclose. I have not received any financial benefit from this discussion.

Objectives

- Discuss various forms of preterm brain injury with focus on VLBW
- Learn about different grades of intraventricular hemorrhages in preterm infants
- Describe likely mechanism and outcomes for developing periventricular hemorrhagic infarction and post hemorrhagic ventricular dilatation
- Explore evidence based or best practices for minimizing brain injury in preterm brain injury, specifically IVH
- Provide an update on strategies for managing posthemorrhagic ventricular dilatation

PROTECt the developing brain

Impact of preterm birth on brain outcomes

Magnitude of the Problem

More than 2 *million infants* are born yearly *worldwide* with birth-weight <1500 gm.

In the U.S. –

- 57,000 infants born yearly
- 90+% survive
- of survivors, 5 10% later exhibit "cerebral palsy", and 25 - 50%, cognitive/behavioral deficits.

Long Term Outcome for Very Preterm Infants

4-5 % risk of cerebral palsy, with 50% having an increased clumsiness and reduced physical ability

> 25% of children requiring educational assistance

25% developing behavioral problems including ADHD, social maladjustment at school and anxiety

Outcomes at 2 years

Fetal brain growth accelerated compared to newborn and beyond

Mathews, et al. 2018

Brain injury in VLBW comes in many forms:

- Intraventricular hemorrhage (IVH)
- Periventricular Hemorrhagic Infarction (PVHI)
- Post-hemorrhagic Ventricular Dilatation (PHVD)
- White Matter Injury (PVL)
- Cerebellar Hemorrhage (CBH)
- Occult Brain Injury of Prematurity

Brain injury in VLBW comes in many forms:

Intraventricular hemorrhage (IVH)
 Periventricular Hemorrhagic Infarction (PVHI)
 Post-hemorrhagic Ventricular Dilatation (PHVD)
 White Matter Injury (PVL)
 Cerebellar Hemorrhage (CBH)
 Occult Brain Injury of Prematurity

Regional description of preterm brain injury

Region	Disorder	cUS	MRI	Neuropathology	Clinical outcome including Neurodevelopmental Disability (NDD)
Germinal Matrix	GMH-IVH I-II	+/-	+	Germinal matrix vasculature rupture into ventricle.	Inconsistent outcomes related to higher risk with more immature infants
	IVH III - PHVI	+	+	Large IVH +/- PHVD. Complicated by parenchymal venous hemorrhagic infarction	Relates to severity with large IVH, PHVD and parenchymal involvement increasing risk of NDD
	PHVD	+	+	Hydrocephalus complicating IVH.	Increased risk for NDD that may be improved by appropriate intervention
White Matter	Cystic Injury	+	+	Cystic periventricular lesions now rare <5%	Increased risk of cerebral palsy with diplegia
	PWMLs	+/-	+	Glial scars in periventricular region	Increased risk of motor disability if PLIC involved. Number and placement may impact outcome
	Loss of WM volume	-/+	+	Loss of axons and oligodendroglia	Increased risk for cognitive and behavioral disorders
	Impaired myelination	-	+	Impaired maturation of oligodendroglia	Increased risk of delayed motor development, clumsiness and mild NDD
Cerebellum	Large CBH	+	+	Hemorrhagic +/- ischemic injury	Increased risk of NDD, language impairment and autism
	Moderate and Punctate CBH	-	+	Focal cerebellar microvascular rupture	Not yet fully defined – mild to no risk for NDD
Cortex	Encephalopathy	-/+	-/+	Impaired cortical neuronal (dendritic) development	Increased risk for NDD in cognition and behavior
	Focal stroke			lschemic arterial infarct	PLIC involvement increased risk for CP

Regional description of preterm brain injury

Region	Disorder	cUS	MRI	Neuropathology	Clinical outcome including Neurodevelopmental Disability (NPD)
Germinal Matrix	GMH-IVH I-II	+/-	+	Germinal matrix vasculature rupture into ventricle.	Inconsistent outcomes related to higher risk with more immature infants
	IVH III - PHVI	+	+	Large IVH +/- PHVD. Complicated by parenchymal venous hemorrhagic infarction	Relates to severity with large IVH, PHVD and parenchymal involvement increasing risk of NDD
	PHVD	+	+	Hydrocephalus complicating IVH.	Increased risk for NDD that may be improved by appropriate intervention
White Matter	Cystic injury	+	+	Cystic periventricular lesions now rare <5%	Increased risk of cerebral palsy with diplegia
	PWMLs	+/-	+	Glial scars in periventricular region	Increased risk of motor disability if PLIC involved. Number and placement may impact outcome
	Loss of WM volume	-/+	+	Loss of axons and oligodendroglia	Increased risk for cognitive and behavioral disorders
	Impaired myelination	-	+	Impaired maturation of oligodendroglia	Increased risk of delayed motor development, clumsiness and mild NDD
Cerebellum	Large CBH	+	+	Hemorrhagic +/- ischemic injury	Increased risk of NDD, language impairment and autism
	Moderate and Punctate CBH	-	+	Focal cerebellar microvascular rupture	Not yet fully defined – mild to no risk for NDD
Cortex	Encephalopathy	-/+	-/+	Impaired cortical neuronal (dendritic) development	Increased risk for NDD in cognition and behavior
	Focal stroke			Ischemic arterial infarct	PLIC involvement increased risk for CP

Germinal matrix: An immature and highly vascular structure

- Gelatinous region
- Origin of neural & glial precursors
- Regresses at 34-36 wk
- Fragile vasculature

Bleeding into germinal matrix = GMH

- Extension into ventricle = IVH
- Collectively = GMH-IVH

Incidence overall is trending down in preterm population

Cizmeci MN et al. J Pediatr, 2019 Shankaran S et al. J Pediatr, 2020 Yeo KT et al. Arch Dis Child Fetal Neonatal Ed, 2020

Figure: Volpe's Neurology of the Newborn, 2017. p 640

Incidence of IVH in very preterm infants unchanged

- Prospective registry of 34,646 infants 22-28 weeks EGA at 26 Neonatal Research Network centers from 1993-2012
 - Survival increased for infants ≥ 23 weeks (varied by age)
 - Reduction in intracranial hemorrhage for infants 26-28 weeks EGA, but not 22-25 weeks
 - Antenatal steroids increased 24% → 87%
 - Intubation decreased 80% → 65%

Stoll B.J. et al. JAMA 314(10): 1039-51, 2015.

Grading Systems of GMH-IVH

- First classification by Papile et al. 1978
- Volpe classification
 - Joseph Volpe, 1989
 - Recommended classification
- A recent classification
 - EurUS.Brain Group, 2020

Grading Intraventricular Hemorrhage

Pap	ile*	Volpe	
Grade	Description	Grade	Description
Grade 1	Germinal matrix hemorrhage	Grade I	Germinal matrix hemorrhage with no or minimal hemorrhage
Grade 2	Blood within but not distending ventricular system	Grade II	IVH (10–50% of ventricular area)
Grade 3	Blood filling and distending ventricular system	Grade III	IVH (>50% of ventricular area; usually distends ventricle)
Grade 4	Parenchymal involvement of hemorrhage	Severe + periventricular hemorrhagic infarction	Grade III IVH with periventricular hemorrhagic infarction

* (Data from Papile L5, Burstein J, Burstein R. Incidence and evolution of the subependymal intraventricular hemorrhage: A study of infants with weights less than 1500 grams. J Pediatr 1978;92:529.)

[†] (Data from Volpe JJ. Neurology of the newborn, 3rd edn. Philadelphia: WB Saunders, 1995:424-428.)

Grade I

Grade II

Grade III

Grade IV Grade III with PHI

Grade I IVH

Volpe Classification Grade-I

<mark>Grade-I</mark> GMH / IVH <10%

ırol, 1989

Volpe J., Ann. Neurol. 1989

Grade II IVH

Volpe Classification Grade-II

Grade-II IVH 10-50%

Volpe J., Ann. Neurol. 1989

1989

Grade III IVH

Volpe Classification Grade-III

Grade-III IVH >50%

Volpe J., Ann. Neurol. 1989

1989

Large GMH-IHV are at risk of developing PHVD

PHVD onset is typically 7-14 days following GMH-IVH

PVHD and PVHI – Most severe complications of IVH

Ventricular Dilatation and Parenchymal Hemorrhage

Post-hemorrhagic Ventricular Dilatation (PHVD) = Ventricular dilatation following GMH-IVH

Periventricular Hemorrhagic Infarction (PVHI) = Parenchymal hemorrhage following GMH-IVH

Equivalent of Papile Grade-IV

Acute/early preterm brain injury

Hambleton G, Wigglesworth JS. Origin of intraventricular haemorrhage in the preterm infant. Arch Dis Child . 1976;51:651-659.)

Most common injury leads to spastic diplegia

Outcomes of babies <28 weeks for IVH, PHVD and PVHI

Early Neurodevelopmental Outcomes Bolisetty et al. n=1472 infants <28 wk

	At 2-3 years	No GMH-IVH	Grade I and II	Grade III or PVHI
9	ND delay	3%	8%	18%
3	Cerebral palsy	7%	10%	30%
Ĭ	Deafness	2%	6%	9%
Ø	Blindness	0	0	2%
	Moderate/Severe Disability		22%	43%

- ND impairments more common with high-grade IVH
- Low-grade IVH is also at risk (in contrast: Payne et al. NICHD data)

Bolisetty S et al. Pediatrics, 2014 Payne A tet al. JAMA Pediatrics, 2013

Outcomes in ELGAN for IVH and PHVD

Extreme Preterms, NICHD Data 2020 n=4216 infants <26 wk

	At 18-26 months CA	Normal cUS	IVH only	PHVD			
	Normal Outcomes	57%	51%	27%			
3	Cerebral palsy	9%	13%	43%			
Ĭ	Deafness	2%	2%	5%			
Ø	Blindness	1%	1%	6%			
	ND Disability	14%	18%	47%			
	Impairments more common in infants with PHVD						
	• Outcomes worse in PHVD requiring surgical intervention						

Shankaran S et al. J Pediatr, 2020

High mortality and morbidity for PVHI

Outcomes of PVHI in the Current Era

- Mortality: 40%
 - Death/severe disability: 58%
- Cerebral palsy: 42%
 - Almost all hemiparetic
 - · Majority independently walking
- Improved outcomes
 - Attributed to perinatal care

Table II.Sonographic characteristicincluded very preterm infants with H	s and outcome of PVHI
Cognitive outcome	
Normal (mean \pm 1 SD)	48 (65)
Subclinical range (-1 and -2 SD)	17 (23)
Clinical range (<-2 SD)	9 (12)
Motor outcome	
Normal (mean \pm 1 SD)	51 (69)
Subclinical range $(-1 \text{ and } -2 \text{ SD})$	8 (11)
Clinical range (<-2 SD)	15 (20)
GMFCS scores	
Level I	18 (58)
Level II	7 (23)
Level III	3 (10)
Level IV	2 (6)
Level V	1 (3)

Influences on IVH and morbidities in VLBW infants

- Immature autoregulation
- Chorioamnionitis
- Outborn and transport
- Cord Milking vs DCC

- Antenatal steroids
- Mg prophylaxis
- Gentle noninvasive support
- Skin to skin

Immature Autoregulation

Narrow regulatory control window

Leijser LM & de Vries LS. Handbook of Clinical Neurology, 2019 El-Dib M et al. J Pediatr, 2020

ORIGINAL ARTICLE

Early inotropes use is associated with higher risk of death and/or severe brain injury in extremely premature infants

Ahmad Nizar Abdul Aziz, Sumesh Thomas, Prashanth Murthy, Yacov Rabi, Amuchou Soraisham, Amelie Stritzke D, Majeeda Kamaluddeen, Essa Al-Awad and Khorshid Mohammad D

Section of Neonatology, Department of Pediatrics, University of Calgary, Alberta, Canada

Table 3. Dopamine, dobutamine, and normal saline use and short-term neurological outcomes adjusted for confounding factors.^a

	Early Dopamine use			Early Dobutamine use			Saline boluses		
Outcomes	AOR	95% CI	p value	AOR	95% CI	p value	AOR	95% CI	p value
Death and/or severe brain injury	2.3	1.1-4.8	.02	2.8	1.3-5.9	.008	2.6	1.3-4.9	.005
Severe brain injury	2.2	0.97-5.1	.06	2.6	1.1-6.2	.03	2.7	1.2-5.7	.01
IVH of any grade	1.5	0.8-2.9	.2	2	1.04-3.9	.02	2.7	1.6-4.6	<.001

^aadjusted for: GA, Small for GA, birth outside the referral tertiary center, cord blood gas pH < 7, APGAR score <5 at 5 minutes of age, hypothermia <36.5 °C on admission, Respiratory distress syndrome required surfactant, use of antenatal steroids, gender, mode of delivery, arterial pCO2 > 60 mm Hg with acidosis, reintubation in the first 72 hours, and early onset sepsis.

Chorioamnionitis

- Induces inflammation & infection
- Meta-analysis, 85 studies, n=13,432
 - Increase in IVH
 - RR: 1.88 (1.61-2.19)
- Increase in all grades of IVH
- Controversial results for histologic chorioamnionitis

Reilly SD & Faye-Petersen OM. NeoReviews, 2008 Villamor-Martinez E et al. Front Physiol, 2018 Bierstone D et al. JAMA Pediatrics, 2018

Transport of the Preterm Infant

- Traumatic insult, vibration, noise
- Transport itself or underlying disorder?
- U.S cohort, n=67,596
 - Increase in IVH
 - aOR: 1.75 (1.64-1.86)
 - Increase in severe IVH
 - aOR: 1.44 (1.22-1.70)

Mohamed MA et al. Arch Dis Child Fetal Neonatal Ed, 2010 Amer R et al. J Pediatr, 2018 Shipley L et al. Pediatr Crit Care Med, 2019 Goswami I et al. Early Hum Dev, 2020

Delivery Room Resuscitation

- Mechanical trauma
- Oxidative stress, hemodynamic fluctuations
- Chest compressions
- Bicarbonate use
- Multiple intubation attempts
- Birth at off-peak hours

additional risk

Handley SC et al. J Perinatol, 2015 Lu H et al. J Stroke Cerebrovasc Dis, 2016 Sauer CW et al. J Pediatr, 2016 Arnon S et al. J Perinatol, 2017 Oei JL et al. Pediatrics, 2017

Antenatal Steroids

Single most effective antenatal intervention

- Induction of maturation
- Hemodynamic stabilization
- Improved respiratory status
- Meta-analysis, 16 studies, n=6093
 - Decrease in IVH
 - RR:0.55 (0.40-0.76)

Study or subgroup	Corticosteroids	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H, Random, 95% CI		M-H, Random, 95% Cl
Mansouri 2010	0/100	0/100			Not estimable
Attawattanakul 2015	0/96	0/98			Not estimable
Dexiprom 1999	0/105	0/101			Not estimable
Gyamfi-Bannerman 2016	2/1427	0/1400		1.1%	4.91[0.24,102.09]
Lewis 1996	0/38	3/39		1.18%	0.15[0.01,2.74]
Taeusch 1979	0/54	4/69		1.21%	0.14[0.01,2.57]
Doran 1980	1/80	4/60		2.09%	0.19[0.02,1.63]
Gamsu 1989	2/130	4/132	•	3.3%	0.51[0.09,2.72]
Qublan 2001	2/70	8/65	+	3.97%	0.23[0.05,1.05]
Fekih 2002	5/63	14/68		8.08%	0.39[0.15,1.01]
Amorim 1999	6/100	17/100		9.02%	0.35[0.15,0.86]
Kari 1994	8/77	18/66		10.91%	0.38[0.18,0.82]
Morales 1989	13/87	20/78		13.58%	0.58[0.31,1.09]
Garite 1992	10/33	19/40		13.94%	0.64[0.35,1.18]
Liggins 1972b	16/554	27/567		14.04%	0.61[0.33,1.11]
Silver 1996	25/54	17/42		17.57%	1.14[0.72,1.82]
Total (95% CI)	3068	3025	•	100%	0.55[0.4,0.76]
Total events: 90 (Corticosteroio	ds), 155 (Control)				
Heterogeneity: Tau ² =0.1; Chi ² =	17.89, df=12(P=0.12); l ² =32.	94%			
Test for overall effect: Z=3.63(P	=0)				

Delayed Cord Clamping

A common delivery room practice

- Hemodynamic stability
- Less inotrope, RBC transfusions
- Meta-analysis, 40 studies, n=4884
 - Decrease in IVH
 - RR:0.83 (0.70-0.99)
- No decrease in severe IVH

Cord Milking Regarded as an alternative: A friend or a foe?

- First meta-analysis, 7 studies, n=501
 - Decrease in IVH
 - RR:0.62 (0.41-0.93)
- Recent RCT, n=474 infants
 - Increase in severe IVH <27 wk
 - Trial prematurely terminated
- Later meta-analysis, 19 studies, n=2014
 - Increase in severe IVH
 - RR:1.95 (1.01-3.76)

Maternal-Preterm Skin-to-Skin Contact Enhances Child Physiologic Organization and Cognitive Control Across the First 10 Years of Life

Ruth Feldman, Zehava Rosenthal, and Arthur I. Eidelman

- 73 premature infants and 73 matched controls
- 1 hour of Kangaroo Care each day for 14 days
- Improved autonomic control at term
- Improved cognitive development throughout the first 10 years associated with better parent-infant interaction
 - Biological Psychiatry 2014

Gentle Care & Non-Invasive NICU Practices

- Non-invasive ventilation
- Less-invasive surfactant administration
- Volume-targeted ventilation
- Midline head positioning & bundle care
 - Not effective in a small meta-analysis
 - Recent multicenter cohort, n=561 infants <30 wk
 - Lower risk of IVH and severe IVH

Klebermass-Schrehof K et al. Neonatology, 2013 Klingenberg C et al. Cochrane Syst Database, 2017 Mian Q. Arch Dis Child Fetal Neonatal Ed, 2018 De Bijl-Marcus K et al. Neonatology, 2017 Romantsik O et al. Cochrane Database Syst Rev, 2017 Kochan M et al. J Perinatol, 2018

De Bijl-Marcus K et al. Arch Dis Fetal Neonat Ed, 2019 Figure from: Aguar M et al. NeoReviews, 2014

Neonatal care bundles are associated with a reduction in the incidence of intraventricular haemorrhage in preterm infants: a multicentre cohort study

Karen de Bijl-Marcus,¹ Annemieke Johanna Brouwe Floris Groenendaal,¹ Gerda van Wezel-Meijler³

Position Statement

Neuroprotection from acute brain injury in preterm infants

Michelle Ryan, Thierry Lacaze-Masmonteil, Khorshid Mohammad

Canadian Paediatric Society, Fetus and Newborn Committee, Ottawa, Ontario

Original Article

Neuroprotection Care Bundle Implementation to Decrease Acute Brain Injury in Preterm Infants

Prashanth Murthy, MD^a, Hussein Zein, MD^a, Sumesh Thomas, MD^a, James N. Scott, MD^b, Ayman Abou Mehrem, MD^a, Michael J. Esser, MD^a, Abhay Lodha, MD^a, Cathy Metcalfe, RN^a, Derek Kowal, RT^a, Leigh Irvine, MN^a, Jillian Scotland, RN^a, Lara Leijser, MD^a, Khorshid Mohammad, MD^{a,*}

Original Article

Neuroprotection Care Bundle Implementation to Decrease Acute Brain Injury in Preterm Infants

Prashanth Murthy, MD^a, Hussein Zein, MD^a, Sumesh Thomas, MD^a, James N. Scott, MD^b, Ayman Abou Mehrem, MD^a, Michael J. Esser, MD^a, Abhay Lodha, MD^a, Cathy Metcalfe, RN^a, Derek Kowal, RT^a, Leigh Irvine, MN^a, Jillian Scotland, RN^a, Lara Leijser, MD^a, Khorshid Mohammad, MD^{a,*}

TABLE 2.

Pre-NPC and Post-NPC Implementations and Interventions in the Study Population

Characteristics			Pre-NPC Bundle (n = 301)	Post-NPC, Bundle (n = 364)	P Value
Hemodynamic management	Inotrope use in the first 72 h	ours	71 (23.6)	25 (6.9)	< 0.001
	Normal saline boluses		112 (37.2)	68 (18.7)	< 0.001
	Medical treatment of PDA		115 (38.9)	157 (43.3)	0.25
	Surgical ligation of PDA		30 (10)	24 (6.6)	0.12
	Timing of PDA treatment	In the first 72 hours	32 (10.6)	32 (8.8)	0.29
		After 72 hours	88 (29.2)	125 (34.4)	
	DCC		77 (25.8)	229 (64.3)	< 0.001
Respiratory management	Any hypercapnia >60 mm H	g in the first 72 hours	116 (38.5)	124 (34.1)	0.26
	Any hypocapnia <35 mm Hg	in the first 72 hours	132 (43.9)	126 (34.6)	0.017
	Extubating success (total = 2	202, 106 before and 96	83 (78.3)	81 (84.4)	0.27
	after the bundle)	11			
0	Pneumothorax		14 (4.7)	6(1.7)	0.02
	Remained intubated for the	first 72 hours	142 (47.2)	152 (41.8)	< 0.001
	Extubation attempt within fi	rst 72 hours	107 (35.5)	96 (26.4)	
	Not intubated		52 (17.3)	116 (31.9)	
Impact of minimal handling	Use of opioids (fentanyl or m	norphine)	57 (18.9)	25 (6.9)	< 0.001

FIGURE 2. Run chart before and after the implementation of the NPC bundle. The color version of this figure is available in the online edition.

	Born Jan 1, 2013 to Sep 20, 2015 (n=342)	Born Sep 21, 2015 to Dec 31, 2018 (n=401)	p-value*
Died before age 21 months	38 (11.1%)	28 (7.0%)	0.049
Milder or severe disability:			
CP (any severity)	19/284 (6.7%)	11/344 (3.2%)	0.041
Visual impairment or blindness	7/287 (2.4%)	7/349 (2.0%)	0.711
Hearing impairment or deafness	3/286 (1.0%)	1/347 (0.3%)	0.333
Cognitive delay <85	54/248 (21.8%)	35/215 (16.3%)	0.135
Any milder or severe disability	69/251 (27.5%)	46/218 (21.1%)	0.109
Severe disability:			
CP GMFCS 3-5	4/284 (1.4%)	2/344 (0.6%)	0.418
Bilateral blindness	3/287 (1.0%)	1/349 (0.3%)	0.332
Bilateral deafness	0/286 (0.0%)	1/347 (0.3%)	>0.999
Cognitive score <70	21/248 (8.5%)	4/215 (1.9%)	0.002
Any severe disability	22/251 (8.8%)	7/218 (3.2%)	0.013
		r	
Death or any severe disability	60/289 (20.8%)	35/246 (14.2%)	0.049
Bayley III Outcomes:			
Motor score <85	63/192 (32.8%)	59/190 (31.1%)	0.712
Language score <85	79/186 (42.5%)	64/170 (37.6%)	0.354
Cognitive score <85	54/248 (21.8%)	35/215 (16.3%)	0.135
Any motor, language, or cognitive <85	113/190 (59.5%)	101/183 (55.2%)	0.403

SickKids Brain Care Bundle by NICU Nurses

Brain Care Recommendations: Postnatal Interventions Infants < 30 weeks AND < 72 hours of age					
	Action	Rationale			
Achieve and Maintain Normothermia	Aim to prevent hypothermia (<36 °C) and hyperthermia (>38 °C) Use heat provision measures with close monitoring and documentation eg polyethylene plastic bag on blankets for infants ≤ 28 weeks, chemical warming mattress	Hypothermia associated with a higher risk of IVH (Miller et al 2011)			
Maintain Neutral/Midline Head Positioning	Advise referral center of these practices Avoid prone positioning Maintain neutral/midline head position in sidelying or supine Maintain neutral/midline head position during handling and procedures Turn infant as a unit Head of bed elevated 30 degrees after NICU admission Complete x-rays with head of bed elevated X-ray completion a 2 person procedure	Turning infant's head to the side affects jugular venous return and may affect intracranial pressure and cerebral blood flow Tilting the head up and down in preterm infants alters cerebral blood volume (Pichler et al, 2001) ICP lower with HOB elevated 30 degrees (Goldberg et al, 1983)			

SickKids Guidelines on Bundle Care by Nurses

SickKids Brain Care Bundle by NICU Nurses

	Brain Care Recommendations: Postnatal Infants < 30 weeks AND < 72 hours	I Interventions s of age
	Action	Rationale
Gentle Diaper Changes	 Slightly raise buttocks to change diaper Avoid lifting legs Infants < 1000 grams: open diaper for 4 days to minimize groin irritation and potential skin breakdown 	Minimize fluctuations in cerebral blood flow since cerebral circulatory changes demonstrated with diaper changes, specifically abrupt changes in venous return and cardiac preload with elevation of lower extremities (Limperopoulos et al, 2008)
Gentle Care	 Minimal and gentle handling Care by nurses with expertise in VLBW infant care To facilitate expertise, co-care/training with an experienced nurse should be facilitated Gently weigh and change under sheet once daily A 2 person procedure for 72 hours Avoid changing bedsheet for 72 hours A 2 person procedure if required before 72 hours Provide nesting and containment 	Prevent agitation and manoeuvres that may fluctuate cerebral blood flow
	Minimize Light: Prevent constant exposure to light Cover isolette No direct light in infants' eyes Minimize Noise: Mute alarms swiftly Do not place objects on isolette Speak softly at bedside	

SickKids Guidelines on Bundle Care by Nurses

EurUS.Brain Group's Recommendations, 2020

Dudink J et al. Pediatr Res, 2020 Parodi A et al. Pediatr Res, 2020

Grade III IVH

Volpe Classification Grade-III

Grade-III IVH >50%

Volpe J., Ann. Neurol. 1989

1989

Post-hemorrhagic Ventricular Dilatation (PHVD)

- Ventricular dilatation following GMH-IVH
- Umbrella term that includes
 - Acute
 - Chronic stages

• Hydrocephalus (=chronic stage) also falls under this umbrella

Why Do Ventricles Enlarge?

Current pathophysiologic mechanisms

Karimy JK et al. Nat Med, 2017 Romantsik O et al. Neoreviews, 2019

Can we reduce morbidity assoc with PHVD?

Figure adapted from Whitelaw A et al. Pediatrics, 2003

Balance in Favor of Early Intervention?

- Invasive
- Early surgery and anesthesia
- Risk of infection

- Preserved white matter volume
- Fewer VP shunts
- Improved outcomes

The ELVIS Trial Early vs Late Ventricular Intervention Study

- RCT, 2006-2016
- 6 countries, 14 centers
- n=126 infants <34 wk
- Ultrasonographic criteria used
- Primary outcome: Death/VP-shunt

97p+4mm

DRIFT vs. ELVIS

	2-year outcomes	DRIFT	ELVIS early	ELVIS late
(†**	Cognitive score			
	Normal range	23%	78%	71%
	< -1 SD	26%	16%	16%
	<-2 SD	51%	6%	13%
7	Motor score			
- `	Normal range	12%	61%	64%
	<-1 SD	15%	29%	15%
	< -2 SD	73%	10%	21%

9

Comparison with Previous Studies

Trial	Intervention	ND Impairment (%)
Ventriculomegaly Trial Group	High-threshold	49
Arch Dis Child Fetal Neonatal Ed, 1994	Increased ICP signs	47
Kennedy et al. Acetazolamide Trial Pediatrics, 2001	Increased ICP signs	66
Whitelaw et al. DRIFT Trial	DRIFT	46
Pediatrics, 2010	High-threshold	58
Leijser et al.	Low-threshold	5
Neurology, 2018	Increased ICP signs	52
ELVIS Trial de Vries LS et al. Arch Dis Child Fetal Neonat Ed, 2019 Cizmeci MN et al. J Pediatr, 2019 Cizmeci MN et al. J Pediatr, 2020	Low-threshold High-threshold	10 20

• Intervening earlier is associated with more favorable outcomes

How should we approach PHVD?

THE JOURNAL OF PEDIATRICS • www.jpeds.com

MEDICAL PROGRESS

Management of Post-hemorrhagic Ventricular Dilatation in the Infant Born Preterm

Mohamed EI-Dib, MD¹, David D. Limbrick, Jr, MD, PhD², Terrie Inder, MBCHB, MD¹, Andrew Whitelaw, MD³, Abhaya V. Kulkarni, MD, PhD⁴, Benjamin Warf, MD⁵, Joseph J. Volpe, MD^{1,6}, and Linda S. de Vries, MD, PhD^{7,8}

Standardized approach to CUS evaluation for PHVD to guide management

Measurement of Ventricular Size

Ventricular Index

Anterior Horn Width

Levene MI & Starte DR. Arch Dis Child, 1981 Davies MW et al. Arch Dis Child Fetal Neonatal Ed, 2000

Occipital enlargement may precede frontal enlargement

Thalamo-occipital Distance

Timing of Lumbar Punctures

Where to Plot?

New Reference Charts

- Charts by Levene, 1981
 - Starts from 27 wk
 - Not suitable for extreme preterms
- New reference charts:
 - Brouwer et al. Radiology, 2012
 - Longitudinal data on 625 infants
 - Starts from 24 wk
- Colorful adaptation by:
 - El-Dib et al. J Pediatr, 2020

Levene MI & Starte DR. Arch Dis Child, 1981 Brouwer MJ et al. Radiology, 2012 Figure adapted from El-Dib M et al. J Pediatr, 2020

Key Points: Ultrasonographic Follow-Up & Early Intervention

Green Zone

Key Criteria:

Ventricular size with the following

- VI ≤ 97th percentile &
- AHW ≤ 6 mm

And

Absence of the following clinical criteria:

- HC growth > 2 cm per week
- Separated sutures
- Bulging fontanelles

Management:

- Observation in NICU
- cUS twice a week until stable for 2 weeks then every 1-2 weeks till 34 weeks PMA
- MRI at Term Equivalent

Key Points: Ultrasonographic Follow-Up & Early Intervention

Yellow Zone Key Criteria: Ventricular size with the following • VI > 97th percentile AHW > 6 mm &/or TOD > 25 mm

And

&

Absence of the following clinical criteria:

- HC growth > 2 cm per week
- Separated sutures
- **Bulging fontanelles**

Management:

- Referral to a regional center for neurosurgical review
- Consider LP 2-3 times * •
 - cUS 2-3X a week until stable for 2 • weeks then every 1-2 weeks till 34 weeks PMA
 - Neurosurgical intervention when no stabilization occurs
 - **MRI at Term Equivalent** ٠

Key Points: Ultrasonographic Follow-Up & Early Intervention

Red Zone Key Criteria: Ventricular size with the following VI > 97th percentile + 4mm AHW > 10 mm &/or TOD > 25 mm

HC growth > 2 cm per week

Any of the following clinical criteria

- Separated sutures
- **Bulging fontanelles**

Management:

&

Or

- Consider LP 2-3 times
- **Neurosurgical intervention** including either temporizing measures or VP shunt
- MRI at Term Equivalent

PHVD management summary

- PHVD → Major risk factor for adverse outcomes
- ELVIS Trial: Earlier intervention improved outcomes
- PVHI has slightly better outcomes in the current era
 - · Still a major risk factor for adverse outcomes
- Long-term follow-up into school-age is required
 - To appreciate higher cognitive challenges

Conclusions, parting words

- IVH is common in preterm infants, especially <28 weeks
- Grading systems have evolved over the years but most concerning complications still remain: PVHI and PHVD
- Strategies for reducing risk of IVH include a neuroprotective bundle with education and consistency of use
- Evidence based, standardize approach to PHVD likely improve short and long term outcomes

Questions

Newborn Brain Society

tlancaster@sunflowerneo.com

