Fetal cardiac arrhythmias: Diagnosis and Management

John Papagiannis, MD
Director, Pediatric Electrophysiology
Ward Family Heart Center
Children’s Mercy Hospital

Objectives

- Discussion and image demonstration of fetal tachycardia
- Review of treatment of fetal tachycardia
- Discussion and image demonstration of fetal bradycardia
- Review of treatment of fetal bradycardia
- Discussion of fetal heart block
Fetal arrhythmia mechanisms 1

• Disturbances of rhythm production:

 – Sinus bradycardia, tachycardia
 – Atrial extrasystoles, ectopic atrial tachycardia
 – Junctional extrasystoles, junctional tachycardia
 – Ventricular extrasystoles, ventricular tachycardia

Fetal arrhythmia mechanisms 2

• Disturbance of impulse conduction-propagation

 • Reentry
 – In atrial myocardium (atrial flutter, atrial fibrillation)
 – In the AV node (AV nodal reentrant tachycardia)
 – Through an accessory AV pathway (AV reentrant tachycardia)

 • Block
 – Sinoatrial
 – Atrioventricular
Echocardiographic analysis of fetal cardiac rhythm: M-Mode echo

Echocardiographic analysis of fetal cardiac rhythm: Doppler
Clinical manifestation 1: Irregular cardiac rhythm

- Atrial extrasystoles
- Junctional extrasystoles
- Ventricular extrasystoles
- 2nd degree AV block (Wenckebach type)

PACs: Conducted and non-conducted
Ventricular bigeminy

Clinical manifestation 2:
Fetal bradycardia

- Heart rate <100 bpm
- Sinus bradycardia
- Atrial or junctional bigeminy with non-conducted extrasystoles
- AV block (high grade or complete)
Persistent bradycardia: Differential diagnosis

Sinus bradycardia

Atrial bigeminy

3rd Degree AV block
Sinus bradycardia

- Transient (vagal, e.g. from transducer pressure)
- Persistent
 - Fetal distress
 - Maternal hypothermia
 - Sinus node disease
 - Primary (genetic etiology)
 - In the context of heterotaxy syndrome (left atrial isomerism/polysplenia syndrome)
 - Long QT syndrome

AV block

- Isolated
- In the context of congenital heart disease
Isolated congenital AV block

- Usually autoimmune mediated
- Maternal collagen vascular disease (SLE, Sjögren’s)
- 1:20,000 births
- Anti-Ro (SSA), anti-La (SSB) antibodies
- Possibility of AV block in the presence of maternal antibodies: 2-5%
- Possibility of appearance in subsequent pregnancies: 15-20%

Autoimmune-mediated AV block

- Age of diagnosis: 18-24 weeks
- Occasionally progressive
- Survival: 75% in isolated CCAVB
- Indices of poor prognosis: Ventricular rate < 55 bpm, endocardial fibroelastosis, myocardial dysfunction, hydrops fetalis
Congenital AV block in the context of CHD

- AV discordance (L-TGA, isolated ventricular discordance)
- Heterotaxy syndrome (Left atrial isomerism)
- LV non-compaction

Congenital AV block in the context of CHD: Prognosis

- Much worse than isolated CCAVB
- 19/123 fetuses with CCAVB and CHD survived neonatal period
- 10/19 had L-TGA
- No hydropic fetus with CCAVB and CHD survived
- Heart rate <55 bpm: very poor prognosis
CCAVB: Treatment

- Conflicting results in terms of steroid use, plasmapheresis
- Possible benefit of steroids in 1st and 2nd degree AV block, hydrops, myocardial dysfunction
- Increase of HR by 10-15\% with sympathomimetics (terbutaline), but without significant impact on survival
- Ventricular pacing: Transient success without long term benefit (mostly experimental data)
- In hydropic fetuses >34 wks: Deliver and pace

Prospective evaluation of fetuses with autoimmune-associated congenital heart block followed in the PR Interval and Dexamethasone Evaluation (PRIDE) Study

- Multicenter, open-label, nonrandomized study involving 30 pregnancies treated with DEX (22 with third-degree block, 6 with second-degree block, 2 with first-degree block) and 10 untreated (9 with third-degree block, 1 with first-degree block).
- There was no reversal of third-degree block with therapy or spontaneously. In fetuses treated with DEX, 1/6 with second-degree block progressed to third-degree block and 3 remained in second-degree block (postnatally 1 paced, 2 progressed to third degree); 2 reverted to normal sinus rhythm (NSR; postnatally 1 progressed to second degree).
- Prematurity and small size for gestational age were limited to the DEX group.

Friedman DM, Am J Cardiol 2009;103(8):1102-6
Medical treatment of CCAVB

Fetal tachycardia

- HR > 160 bpm
- Sinus (160-200 bpm)
- Pathologic mechanisms (180-280 bpm)
Sinus tachycardia

- Multiple etiologies
- Fetal distress
- Anemia
- Infection
- Maternal use of sympathomimetics
- Fetal thyrotoxicosis

Pathologic fetal tachycardia

- Atrial tachycardia
 - EAT
 - Atrial flutter
- Junctional tachycardia
 - JET
 - AVNRT
- AV reentrant tachycardia
 - Usual AV accessory pathway
 - PJRT
- Ventricular tachycardia
 - Ectopic focus
 - Abnormal substrate (e.g. ventricular aneurysm, tumors)
 - Related to LQTS
Atrial flutter

Short VA tachycardia: Accessory pathway
Long-VA tachycardia differential diagnosis: Sinus tachycardia, EAT, PJRT

Fetal tachycardia: Etiology

- 70-90% AV reentry
- Check for congenital anomaly (Ebstein’s, L-TGA, rhabdomyoma)
- Majority of AV reentry: Classic AP with rapid conduction
- Minority: Incremental retrograde only AP with long VA conduction (PJRT). “Incessant” tachycardia with frequent brief terminations
Fetal tachycardia: Atrial

• Ectopic atrial tachycardia (<10%)
 – 1:1 conduction, long VA
 – Warm-up and cool-down
• Atrial flutter (20%)
 – More As than Vs
 – Atrial rate 300-500 bpm
 – r/o accessory pathway, CHD
• Refractory to therapy, may need combination of drugs. Rate control may be the only achievable goal sometimes

Fetal tachycardia: Junctional

• Junctional: very rare in fetus
• AV nodal reentrant (AVNRT)
 – Very short VA interval (simultaneous atrial and ventricular depolarization, cannon A waves)
 – Very rare in fetus (Dual AV nodal physiology develops later in life)
 – Theoretically easier to control
• Junctional Ectopic Tachycardia (JET)
 – Persistent
 – Variations in heart rate
 – Extremely rare
 – Resistant to medical therapy. Rate control the realistic goal
Fetal tachycardia: Ventricular

- Ventricular tachycardia: relatively rare
- HR 180-300 bpm
- AV dissociation, V>A
- May be difficult to differentiate from JET
- Usually automatic, non-sustained
- Rare underlying etiology: Long QT, LV non-compaction, rhabdomyoma, fibroma, LV aneurysm

Fetal tachycardia: Ventricular

- Long QT syndrome
 - Possible cause of intrauterine death
 - High suspicion if:
 - Constant bradycardia(110-120 bpm), low HR variability
 - 2nd degree AV block (functional)
 - torsade des pointes
 - Diagnosis: Fetal magnetocardiography
- Treatment: B-blockers, other meds (mexiletine, Mg for TdP).
Fetal tachycardia: Treatment

• In the final stages of pregnancy: Brief therapeutic attempt, if unsuccessful, delivery (preferably with CS), direct neonatal therapy
• Fetuses <34 weeks with sustained tachycardia intensive medical therapy to avoid complications of prematurity

Fetal tachycardia: Maternal F/U

• Usually start therapy in hospital
• Maternal ECG, echo: Check for WPW, LQT, cardiomyopathy
• Check electrolytes, renal, thyroid function
• Drug levels (esp. digoxin)
Treatment of fetal tachycardia

- **Digoxin**
- Initially high doses (0.25-0.5 mg tid) until drug levels 2-2.5 ng/ml, then adjust according to needs
- Fetal levels 70-100% of maternal
- Watch for drug-drug interaction (Flecainide, propafenone, amiodarone, verapamil may increase Dig levels)
- 50-70% success rate in non-hydropic fetuses

- **Flecainide**
 - Fetal levels: 80% of maternal
 - Therapeutic levels: 200 - 1000 ng/ml
 - Dosage: 100 mg q 6-8 hrs
 - Possible toxicity: pro-arrhythmia, worsen myocardial dysfunction
 - Time to effect: 1-14 d.
Drug Combinations

• Digoxin + Flecainide, Digoxin + Amiodarone
• In hydropic fetus: direct fetal therapy
 – Intraumbilical digoxin, adenosine, amiodarone
 – Intramuscular digoxin
Other arrhythmias

- Sustained VT: Amiodarone, Sotalol
- Atrial flutter: Dig +/- amio or sotalol
- PJRT: usually resistant to dig, better effect with: Flecainide, Amiodarone, Sotalol

Conclusions

- Fetal arrhythmia can be diagnosed with high degree of accuracy with fetal echocardiographic methods
- Treatment, depending on etiology, severity, can be delivered either transplacentally or intraumbilically, or directly after emergent delivery