Asthma Therapy & Adrenal Suppression In Children

Alexandra Ahmet
Great Plains Endocrine Symposium 2016
Disclosure

CME
- Nycomed
- Takeda

Advisory Boards
- Nycomed
- Reveragen

Research
- Nycomed
Overview

- Physiology
- Oral steroids & suppression
- Testing
- Inhaled corticosteroids (ICS) & suppression
- Recommendations
ICS = Essential Asthma Therapy

- Eliminates or reduces chronic symptoms of asthma
- Prevents exacerbations
- Maximizes lung function
- Reduces need for rescue beta agonist
- Enables normal activity and exercise

- Reduces hospitalizations
 - Suissa et al. 2002

- Reduces asthma death rate
 - Ernst et al. 1992
Possible Side Effects

- Adrenal suppression
- Growth suppression
- Osteoporosis
- Obesity
- Cushingoid features
- Hypertension
- Hypercholesterolaemia
- Diabetes
- Increase infection risk

- Myopathy
- Cataracts
- Glaucoma
The Case

ID
- 5 ½ yo girl with asthma

HPI
- Unwell x 12 hours
- Unable to rouse in AM

ER
- Treated for hypoglycemic seizure

ICU x 2 months
- Encephalopathic
- w/u metabolic/infectious/neurological -ve
The Case

PMH
- Asthma
- Flovent > 500mcg/day

Chest Clinic
- malaise/fatigue/headache/poor growth
- r/o adrenal suppression
The Case - Growth
The Answer to the Case

ACTH stimulation test:
- Basal & peak cortisol levels <25 nmol/L
Why Does This Child Have Adrenal Suppression?

a) All children taking ICS are at moderate risk of adrenal suppression.

b) Children receiving ≥ 500 mcg of fluticasone are at moderate to high risk of adrenal suppression.

c) Only children receiving > 1000 mcg of fluticasone are at risk of adrenal suppression.

d) She must have received PO steroids that her parents are not reporting.
HPA Axis Suppression & Steroids
The Circadian Rhythm

[Diagram showing plasma concentration of ACTH and cortisol over 24 hours with key times marked: 12:00 P.M., 6:00 P.M., 12:00 A.M., 6:00 A.M., 12:00 P.M.]

Plasma concentration

ACTH

Cortisol

Mean value

Transient fluctuations

Time of day

12:00 P.M. 6:00 P.M. 12:00 A.M. 6:00 A.M. 12:00 P.M.
Circadian Regulation

Hypothalamus

Stressors

Vasopressin &
Pro-inflammatory cytokines

CRH

Pituitary

ACTH

Adrenals

Cortisol

THE HPA AXIS
Adrenal Suppression

The HPA Axis

Glucocorticoids
Adrenal Insufficiency

Glucocorticoid
- Weakness/fatigue
- Malaise
- Nausea/vomitting
- Headache
- Poor weight gain
- Poor growth
- Myalgia/arthralgia
- Psychiatric symptoms
 - Hypoglycemia
 - Hypotension

Mineralocorticoid
- Salt craving
- Weight loss
- Volume depletion
- Hypotension
- Hyponatremia
- Hyperkalemia
Oral Steroids and Suppression

- Dose
- Duration
- Timing
- Frequency
- Time for recovery (days-years)

Stress and Adrenal Insufficiency

- Several reported cases of hypotension/death during surgery
- Decreased ability to fight infection
- Need for STRESS COVERAGE

Shulman, J Pediatrics, 2007
Axelrod, Endocrinol Metab Clin N 2003
Rix, J Peds, 2005
Testing
How do we test for Adrenal Suppression?

Gold Standard:
- Insulin induced hypoglycemia test

Best Test:
- Low Dose (1 mcg) ACTH stimulation test
- ? Peak cortisol >500 nmol/L

Considerations:
- Morning test
- Reduce or eliminate tubing
- Peak 20-30 minutes
- HOLD glucocorticoids x 24 hours

How do we test for Adrenal Suppression?

First morning cortisol:
- **8 AM** cortisol
- < 50-100 nmol/L – rule in A.S.
- >350-500 nmol/L – rule out A.S.
- >275 nmol/L ? screening threshold in asymptomatic

Considerations:
- Pubertal status
- HOLD glucocorticoids

Testing Challenges

- Differences between immunoassays
- Measurement of total (not free) cortisol
- Significance of “borderline” stimulated results

Future considerations

- Mass spectrometry
- Measurement of free cortisol / Cortisol binding globulin
- Further study of clinical significance of borderline results

Kazlauskaitė, Endocr Dev, 2010; Grusen, Endo Abstr 2012
The case – The aftermath

- Fluticasone gradually weaned
- Gradual normalization of ACTH stim test
- Stress steroids for infection
- 8 months (off steroids x 2mo)
 - cortisol peak >500nmol/L
 - energy much improved
 - asthma well controlled on steroid sparing agents
The Case - Growth Post d/c of ICS
Inhaled Corticosteroids & HPA Axis Suppression
Evidence: Acute Adrenal Crisis (AAC) Associated with ICS

2912 questionnaires (pediatricians and endocrinologists)

33 patients (500 – 2000 mcg/day ICS) Met diagnostic criteria for AAC associated with ICS

23 Children had acute hypoglycemia
5 children had insidious onset of symptoms

4 Adults had insidious onset of symptoms
1 adult had hypoglycemia and convulsions
Symptomatic AS among children in Canada

Two year surveillance study Canadian Paediatric Surveillance Program (CPSP)
- 46 cases symptomatic AS, 6 cases adrenal crisis
- Growth failure and/or non-specific symptoms
- **37 children (80%) received ICS** (alone or with other GC)

Conclusions:
- Although rare, significant AS can lead to significant morbidity
- Children being treated for Asthma are at risk
- Children with poor growth or non-specific symptoms should be tested for AS
The Fate of Inhaled Corticosteroids

- **Mouth and pharynx**: 10 - 50% Deposited in lung
- **GI tract**: 60 - 90% Swallowed (reduced by spacer or mouth rinsing)
- **Lung**: Complete absorption from the lung
- **Systemic Circulation**: Systemic side effects
- **Liver**: Orally bioavailable fraction, First-pass inactivation
- **Orally bioavailable fraction**: A.S.

Barnes, 2007
Factors that Affect Systemic Bioavailability and Bioactivity of ICS

- Dose
- Formulation & Delivery System
- Physiological Factors
- Buccal Absorption
- Intestinal Absorption
- Lung Absorption
- Post absorption Pharmacokinetics
- Pharmacodynamics

Systemic Bioavailability

Slide created by Ric M Procyshyn
Biochemical evidence of HPA axis suppression on ICS

≥ 500 mcg/day fluticasone high risk inter-individual susceptibility

- Smith, Ped and Child Health, 2012
- Lipworth, Arch Intern Med, 1999
- Mahacholklertwattana, Arch Dis Child, 2004
- Paton, Arch Dis Child, 2006

Adrenal suppression rare on low dose ICS therapy

- Smith, Ped and Child Health, 2012
- Bacharier, Pediatrics, 2000;
- Pescollderungg, Thorax, 2003
Recommendations - Screening Thresholds AS (Daily ICS dose, mcg)

<table>
<thead>
<tr>
<th>Corticosteroid</th>
<th>Trade Name</th>
<th>Threshold (6-11 years)</th>
<th>Threshold (12 and older)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beclomethasone dipropionate (HFA)</td>
<td>QVAR</td>
<td>≥400</td>
<td>≥400</td>
</tr>
<tr>
<td>Budesonide</td>
<td>Pulmicort</td>
<td>≥800</td>
<td>≥800</td>
</tr>
<tr>
<td>Ciclesonide</td>
<td>Alvesco</td>
<td>>400</td>
<td>>400</td>
</tr>
<tr>
<td>Fluticasone propionate</td>
<td>Flovent</td>
<td>≥500</td>
<td>≥500</td>
</tr>
<tr>
<td>Fluticasone furoate</td>
<td>Arnuity* Ellipta</td>
<td>≥100</td>
<td>≥100</td>
</tr>
<tr>
<td>Mometasone</td>
<td>Asmanex Twisthaler</td>
<td>N/A</td>
<td>≥800</td>
</tr>
</tbody>
</table>

Ahmet et al. CPS statement, DRAFT 2016

Breakdown of Common ICS Doses:
Total average daily dose for ages 0-11 (all indications)

Fluticasone

- 500 mcg* 42.8%
- 200 mcg
- 250 mcg
- 100 mcg
- Other

IMS Health Canada, Jan – March 2010.
Clinical evidence of HPA axis suppression on ICS

- Several reports of adrenal crises
- Hypoglycemic symptoms
- Suppressed ACTH stimulation tests
- Most: fluticasone ≥500-mcg/day

Dunlop, Pediatr Pulmonol, 2002
Patel, Arch Dis Child, 2001
Randell, Pediatr Drugs, 2003
Allen, Metabolic Clinics NA, 2005
Todd, Arch Dis Child 2002
Corticosteroid exposure prior to presentation with adrenal suppression

<table>
<thead>
<tr>
<th>Case</th>
<th>Inhaled corticosteroids</th>
<th>Oral corticosteroids</th>
<th>Other Meds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
<td>Dose</td>
<td>Duration</td>
</tr>
<tr>
<td>1</td>
<td>Fluticasone</td>
<td>125-250 ug BID</td>
<td>11 months</td>
</tr>
<tr>
<td>2</td>
<td>Fluticasone</td>
<td>125-250ug BID</td>
<td>6 years</td>
</tr>
<tr>
<td>3</td>
<td>Fluticasone</td>
<td>250 ug BID</td>
<td>3 years</td>
</tr>
<tr>
<td>4</td>
<td>Fluticasone</td>
<td>250 ug BID</td>
<td>4 years</td>
</tr>
</tbody>
</table>

*CS = corticosteroids

Adapted from M.Kupfert Heller, J Lacks, T Kovesi and A Ahmet, Asthma, 2010
Symptoms of AS and adrenal function before & after adrenal recovery

<table>
<thead>
<tr>
<th>Case</th>
<th>Presenting Symptoms</th>
<th>AM Cortisol Pre-CIC Normal ≥171</th>
<th>AM (Normal >171)</th>
<th>Stimulated (Normal>500)</th>
<th>Time to recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cortisol screen</td>
<td>56</td>
<td>255</td>
<td>587</td>
<td>5 months</td>
</tr>
<tr>
<td>2</td>
<td>Hypoglycaemic seizure</td>
<td>9</td>
<td>174</td>
<td>490</td>
<td>4 months</td>
</tr>
<tr>
<td>3</td>
<td>Cortisol screen</td>
<td>82</td>
<td>204</td>
<td>579</td>
<td>12 months</td>
</tr>
<tr>
<td></td>
<td>Decreased energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cortisol screen</td>
<td>50</td>
<td>195</td>
<td>566</td>
<td>6 months</td>
</tr>
<tr>
<td></td>
<td>Decreased energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from M.Kupfert Heller, J Lacks, T Kovesi and A Ahmet, Asthma, 2010
Possible risk factors for AS

Possible Risk Factors

- Higher ICS dose
- Concomitant nasal corticosteroid use
- Concomitant use of CYP3A4 inhibitors
- Cumulative glucocorticoid dose

Associations

- Low BMI
- Poor growth
- Cushingoid features

Goldbloom, CPSP, 2016; Ahmet, AACI, 2011; Kapadia, JAMA, 2016; Zollner, Pediatrics, 2012
Growth & HPA suppression with ICS

- Poor growth is a common association with AS

- However, height SDS change NOT a sensitive predictor of adrenal suppression

- Growth and adrenal suppression can be independent of ICS

Goldbloom and Ahmet, Archives of Disease and Child in press 2016; Dunlop, Arch Dis Child, 2004
Who should be tested?

- Symptomatic AS
- Growth failure, weight loss, anorexia
- High dose ICS
- Long term IN or periodic PO GC
- Low BMI = additional R.F
PES Drugs and Therapeutics Committee Recommendations 2016

Symptomatic
- a.m. cortisol <3ug/dL (83nmol/L) = A.S.
- a.m. cortisol >3ug/dL → LDST
- LDST <18ug/dL (495nmol/L) = A.S.

Asymptomatic
- a.m. cortisol <3ug/dL = likely A.S. → LDST
- a.m. cortisol >10ug/dL (275nmol/L)=unlikely A.S.
- a.m. cortisol 3-10ug/dL → refer to specialist

* All cases of proven A.S. should be managed by a specialist

Kapadia, JAMA, 2016
Recommendations
CPS/CPEG
Position Statement DRAFT
Recommendations
All Patients

- Lowest possible dose ICS
 - Regular re-evaluation
- Physician and patient/family awareness of potential for AS
- Education that ICS benefit > risk & that compliance and appropriate f/u = best prevention
- Empiric stress dosing for critical illness or surgery during and x 1-2 years post ICS (draw cortisol prior to treatment)
- Physician awareness of the limitations of cortisol testing
Recommendations
Who should be screened?

- High (and high moderate) dose ICS (table) for >3 months
- Systemic GC for >2 weeks or >3 cumulative weeks in 6 months
- Concomitant CYP3A4 inhibitors
- Poor linear growth
- Cushings features
- Symptoms of AS
- Consider if more than one form of GC
- Planned surgery
Recommendations - Screening Thresholds AS
(Daily ICS dose, mcg)

<table>
<thead>
<tr>
<th>Corticosteroid</th>
<th>Trade Name</th>
<th>Threshold (6-11 years)</th>
<th>Threshold (12 and older)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beclomethasone dipropionate (HFA)</td>
<td>QVAR</td>
<td>≥400</td>
<td>≥400</td>
</tr>
<tr>
<td>Budesonide</td>
<td>Pulmicort</td>
<td>≥800</td>
<td>≥800</td>
</tr>
<tr>
<td>Ciclesonide</td>
<td>Alvesco</td>
<td>>400</td>
<td>>400</td>
</tr>
<tr>
<td>Fluticasone propionate</td>
<td>Flovent</td>
<td>≥500</td>
<td>≥500</td>
</tr>
<tr>
<td>Fluticasone furoate</td>
<td>Arnuity* Ellipta</td>
<td>≥100</td>
<td>≥100</td>
</tr>
<tr>
<td>Mometasone</td>
<td>Asmanex Twisthaler Zenhale</td>
<td>>400</td>
<td>≥800</td>
</tr>
</tbody>
</table>

Ahmet et al. DRAFT 2016

Recommendations
Who should be screened?

- High (and high moderate) dose ICS (table)
- Systemic GC >2 weeks or >3 cumulative weeks in 6 months
- Concomitant CYP3A4 inhibitors
- Poor linear growth
- Cushings features
- Symptoms of AS
- Consider if more than one form of GC
- Planned surgery
Recommendations - How to screen?
First morning cortisol

Procedure
- 8 a.m. test
- Hold PO GC the evening before and morning of the test
- Hold ICS the evening before and morning of the test
- Consider fasting

Results
- a.m. cortisol <100 nmol/L = likely A.S.
- a.m. cortisol 100-275 nmol/L = possible A.S.
- a.m. cortisol >275 nmol/L = A.S. unlikely if *asymptomatic*
Recommendations - Screening and Management of Asymptomatic Patients

A.M. cortisol < 100nmol/L = likely A.S.

- Daily physiologic & Stress dosing GC
- Patient education
- Stress dosing card
- Endocrine consult
Recommendations - Screening and Management of Asymptomatic Patients

A.M. cortisol 100-275nmol/L = possible A.S.

- Refer to endocrinology if <2 years of age
- Empiric stress dosing for mild to severe stress
- Stress dosing card
- Repeat cortisol q 3-6 months
- Consider LDST or referral to endo if remote travel/housing
- LDST 1 year post ICS d/c if a.m. cortisol <275 nmol/L
- Refer to endocrinology abnormal LDST (peak <500 nmol/L)
Recommendations - Screening and Management of Asymptomatic Patients

A.M. cortisol >275 nmol/L = clinically significant A.S. unlikely

- Repeat a.m. cortisol every 3-6 months
- Empiric stress dose for critical illness or surgery
Recommendations - Screening and Management of Symptomatic Patients

Adrenal crisis
- Draw cortisol and treat

Symptomatic A.S. → low dose ACTH stim test
- Peak<500nmol/L = A.S.
- Initiate physiological daily and stress dosing GC
- Consult endocrinology
- Peak >500nmol/L = AS very unlikely
- Investigate for other etiology of symptoms

Ahmet et al. DRAFT 2016
Recommendations
Treatment of A.S.

<table>
<thead>
<tr>
<th>Indication</th>
<th>Hydrocortisone dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal crisis, severe illness or injury</td>
<td>100mg/m2 IV/IM (max 100mg) stat then 100 mg/m2/day over 24 hours (max 200mg)</td>
</tr>
<tr>
<td>Surgery</td>
<td>50-100mg/m2 pre-op then 100 mg/m2/24 hours IV (max 100mg) over 24 hours</td>
</tr>
<tr>
<td>Mild to moderate illness</td>
<td>30mg/m2/day divided TID Reassess if duration >3 days</td>
</tr>
<tr>
<td>Vomiting / unable to tolerate PO</td>
<td>Must be given parenterally 25mg hydrocortisone q 6 hourly IV or q 8 hourly IM</td>
</tr>
<tr>
<td>Daily physiologic dosing</td>
<td>8 mg/m2/day</td>
</tr>
<tr>
<td>Remote travel / housing</td>
<td>Teaching IM solucortef</td>
</tr>
</tbody>
</table>

Ahmet et al. DRAFT 2016
Adrenal Suppression with ICS
Take Home Messages

- Adrenal crisis occurs

- \(\uparrow\) dose ICS in most clinically significant A.S.

- Education and responsible prescribing of ICS is essential

- Poor growth or possible symptoms of A.S. \(\rightarrow\) Test

- \(\uparrow\) dose ICS or other risk factors \(\rightarrow\) screen

- A.S. can persist after discontinuation of GC
Thank you!

Questions?
Pharmacological Characteristics of ICS

<table>
<thead>
<tr>
<th></th>
<th>Fluticasone HFA</th>
<th>Budesonide DPI</th>
<th>Beclomethasone HFA</th>
<th>Ciclesonide HFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein binding</td>
<td>90-91%</td>
<td>85-90%</td>
<td>87%</td>
<td>98-99%</td>
</tr>
<tr>
<td>Lung deposition</td>
<td>12-20%</td>
<td>22-42%</td>
<td>50-60%</td>
<td>52%</td>
</tr>
<tr>
<td>Oral bioavailability</td>
<td><1%</td>
<td>11%</td>
<td>15%</td>
<td><1%</td>
</tr>
<tr>
<td>Particle size</td>
<td>2.8μm</td>
<td>>2.5μm</td>
<td><2.0μm</td>
<td><2.0μm</td>
</tr>
<tr>
<td>Clearance Rate (L/h)</td>
<td>66</td>
<td>84</td>
<td>150/120</td>
<td>152/228</td>
</tr>
<tr>
<td>Dosing</td>
<td>Twice/day</td>
<td>Twice/day</td>
<td>Twice/day</td>
<td>Once/day</td>
</tr>
<tr>
<td>Adrenal Suppression</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>- (to date)</td>
</tr>
</tbody>
</table>

Adapted from Ahmet et al, AACI, 2011
Glucocorticoids: Common Features

<table>
<thead>
<tr>
<th></th>
<th>Duration of Action</th>
<th>Anti-inflam Potency</th>
<th>HPA Suppr Potency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortisol (hydrocort)</td>
<td>Short</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Prednisone/ Prednisolone</td>
<td>Short</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Methylpred</td>
<td>Short</td>
<td>5</td>
<td>5*</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>Long</td>
<td>30</td>
<td>70-80</td>
</tr>
</tbody>
</table>

Hansen JW, Pediatrics, 1976
Rivkees, Pediatrics, 2000
Up to Date, 2007
Factors that Affect Systemic Bioactivity of ICS

- Systemic bioactivity (e.g., adrenal suppression) of ICS is dependent on the following:
 - Overall systemic bioavailability of ICS
 - Buccal, intestinal and lung absorption
 - Post absorption pharmacokinetics
 - Metabolism/biotransformation of the active compound
 - Protein binding
 - Half-life
 - Systemic Clearance
 - Pharmacodynamics
 - Interaction between the ICS and the glucocorticoid receptor

PK and PD factors that contribute to risk of systemic side effects of ICS

<table>
<thead>
<tr>
<th></th>
<th>Efficacy</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosing</td>
<td>Increase in dosing frequency may result in reduced compliance</td>
<td>Increase in dosing frequency increases the potential for local and systemic side effects</td>
</tr>
<tr>
<td>Lung deposition</td>
<td>Greater lung deposition (lung bioavailability) increases efficacy</td>
<td>Greater lung deposition (lung bioavailability) increases systemic bioavailability and thereby increases the potential for systemic side effects</td>
</tr>
<tr>
<td>Glucocorticoid receptor affinity</td>
<td>High receptor-binding affinity correlates positively with increased efficacy</td>
<td>High receptor-binding affinity increases the potential for both local and systemic side effects</td>
</tr>
</tbody>
</table>

Slide created by Ric M Procyshyn Pharm

Derendorf et al., Eur Respir J 2006; Kelly, HW. Ann Pharmacother 2009
Bioavailability

| PK and PD factors that contribute to risk of systemic side effects of ICS |
|-------------------|----------------------------------|
| **Efficacy** | **Safety** |
| High pulmonary bioavailability is necessary for efficacy | Increased systemic bioavailability increases the potential for systemic side effects. Systemic bioavailability is a function of the sum of pulmonary and oral bioavailability |
| Not applicable as this parameter pertains to the systemic circulation and not lung tissue | High plasma protein binding reduces the potential for systemic side effects since only the free drug is pharmacologically active |

Slide created by Ric M Procyszyn
Derendorf et al., Eur Respir J 2006;Kelly, HW. Ann Pharmcother 2009
PK and PD factors that contribute to risk of systemic side effects of ICS

<table>
<thead>
<tr>
<th></th>
<th>Efficacy</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-life</td>
<td>Not applicable as half-life refers to systemic circulation and not lung tissue. Pulmonary retention time is more relevant in this case</td>
<td>The longer the half-life the greater the potential for systemic side effects</td>
</tr>
<tr>
<td>Clearance</td>
<td>Not applicable as this parameter pertains to the systemic circulation and not lung tissue</td>
<td>The greater the clearance the less potential for systemic side effects</td>
</tr>
</tbody>
</table>

*Slide created by Ric M Procyshyn
Derendorf et al., Eur Respir J 2006; Kelly, HW. Ann Pharmcother 2009*