OB Ultrasound and the Pediatrician

Borderline Anomalies

Timothy L. Bennett, M.D.
Professor, Department of OB/GYN
University of Missouri – Kansas City
Director, Outpatient Perinatal Services
Children’s Mercy Fetal Health Center

Disclosure

• No conflict of interest to disclose

Introduction

Commonly Diagnosed Anomalies

• Spina Bifida
• Hydrocephalus
• Hypoplastic Left Heart Syndrome
Borderline Anomalies

- New technology facilitated diagnosis
 - Technology advances faster than our understanding of fetal development
- Diagnosis tends to be imprecise
- Associated with normal development
- Associated with abnormal development
- Presence of additional U/S findings important
- Counseling regarding prognosis difficult (for isolated finding)
- Neonatal follow-up planning not standardized

Intracranial Anomalies: Posterior Fossa

Diagnosis?
Dandy-Walker Variant

Description

- Partial agenesis or hypoplasia of inferior vermis
- Cystic dilation of 4th ventricle
- Part of Dandy-Walker continuum

Dandy-Walker Variant

Associated anomalies

- Abnormal karyotype (30%)
- Ventriculomegaly
- Absent corpus callosum
- Cardiac defects
- Genito-urinary abnormalities
- Limb defects

Dandy-Walker Malformation Complex

Table 1. Reported Autopsy Pathology or Postmortem Imaging After Prenatal Diagnosis of Dandy-Walker Malformation

Reference	GA (wk)	Agenesis	Partial	Discordant	Discordant	Cases (%)
Arute and Fang	14-15	1	0	0	0	50.0%
Sleigh et al	15-16	2	0	0	0	50.0%
Inoue et al	16-17	3	0	0	0	50.0%
Lossen et al	17-18	4	0	0	0	50.0%
De Ziegler et al	18-19	5	0	0	0	50.0%
Ong et al	19-20	6	0	0	0	50.0%

- Ventricles
- Head
- Heart
- Limb
- Body

DWC

Natural history/Prognosis

- Extremely variable prognosis
- Range: normal development to severe handicap or death
- Depends largely on associated anomalies
- Utility of partial “variants” unclear
 - Only 41% concordance with autopsy findings

Fetal Cerebral Ventrices

- Head
- Limb
- Body
- Heart
- Ventricles
Mild Ventriculomegaly – Long Term Outcome

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Glioma > 12 mm</th>
<th>Normal Males</th>
<th>Normal females</th>
<th>p*</th>
<th>p**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brainstem</td>
<td>55.16 ± 8.14</td>
<td>56.02 ± 7.33</td>
<td>54.04 ± 7.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fornix axon trajectories</td>
<td>55.16 ± 8.14</td>
<td>56.02 ± 7.33</td>
<td>54.04 ± 7.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fornix axon trajectories</td>
<td>55.16 ± 8.14</td>
<td>56.02 ± 7.33</td>
<td>54.04 ± 7.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fornix axon trajectories</td>
<td>55.16 ± 8.14</td>
<td>56.02 ± 7.33</td>
<td>54.04 ± 7.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fornix axon trajectories</td>
<td>55.16 ± 8.14</td>
<td>56.02 ± 7.33</td>
<td>54.04 ± 7.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fornix axon trajectories</td>
<td>55.16 ± 8.14</td>
<td>56.02 ± 7.33</td>
<td>54.04 ± 7.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fornix axon trajectories</td>
<td>55.16 ± 8.14</td>
<td>56.02 ± 7.33</td>
<td>54.04 ± 7.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fornix axon trajectories</td>
<td>55.16 ± 8.14</td>
<td>56.02 ± 7.33</td>
<td>54.04 ± 7.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fornix axon trajectories</td>
<td>55.16 ± 8.14</td>
<td>56.02 ± 7.33</td>
<td>54.04 ± 7.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fornix axon trajectories</td>
<td>55.16 ± 8.14</td>
<td>56.02 ± 7.33</td>
<td>54.04 ± 7.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fornix axon trajectories</td>
<td>55.16 ± 8.14</td>
<td>56.02 ± 7.33</td>
<td>54.04 ± 7.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Agenesis of the Corpus Callosum

- Failure of axons to cross midline and form corpus callosum
- May be complete or partial

Corpus Callosum – Normal Anatomy

Absence of the Corpus Callosum

Absence of the Corpus Callosum
Absence of the Corpus Callosum

Agenesis of the Corpus Callosum

Associated anomalies

- Structural anomalies seen 60% of the time
- Chromosomal anomalies 10-20%
- Multiple syndromes described
- Numerous intracranial anomalies associated
- Cardiac, gastrointestinal, musculoskeletal, and renal defects common

Borderline CNS Anomalies

Antepartum Evaluation

- Targeted ultrasound
- Fetal echocardiogram
- Amniocentesis
- Fetal MRI?
- Genetic consultation
- IgM titers for CMV, Toxoplasmosis, Parvovirus, Rubella (Ventriculomegaly, ACC)

Agenesis of the Corpus Callosum

Etiology

- Incidence: 0.3-0.7% of general population
- Genetics
 - Most sporadic
 - Autosomal dominant, recessive, and x-linked described
- Teratogens
 - Alcohol, cocaine, valproate
 - CMV, Rubella

Prognosis

- Isolated
 - 75% normal or near normal at 3 years
 - Subtle cognitive defects may occur later

Agenesis of the Corpus Callosum

Incidence:

- Incidence: 0.3-0.7% of general population
- Genetics
 - Most sporadic
 - Autosomal dominant, recessive, and x-linked described
- Teratogens
 - Alcohol, cocaine, valproate
 - CMV, Rubella

Etiology

- Incidence: 0.3-0.7% of general population
- Genetics
 - Most sporadic
 - Autosomal dominant, recessive, and x-linked described
- Teratogens
 - Alcohol, cocaine, valproate
 - CMV, Rubella

Prognosis

- Isolated
 - 75% normal or near normal at 3 years
 - Subtle cognitive defects may occur later

Table 3

<table>
<thead>
<tr>
<th>Etiology</th>
<th>CNS Anomalies</th>
<th>Cardiac/Gastrointestinal/Musculoskeletal/Renal Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autosomal dominant</td>
<td>Reversal of cerebral asymmetry, bicoronal plagiocephaly</td>
<td>Hypoplasia, micrognathia, hypospadias, vertebral defects</td>
</tr>
<tr>
<td>Autosomal recessive</td>
<td></td>
<td>Hypoplastic lungs, diaphragmatic hernia, congenital heart defects</td>
</tr>
<tr>
<td>X-linked</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Borderline CNS Anomalies (Isolated)
Neonatal Evaluation

- Fetal MRI
 - If abnormal,
 - Genetics
 - Neurosurgery/Neurology
 - Follow for developmental delays
 - Follow-up MRI

Choroid Plexus Cyst
Description

- One or more anechoic cysts in choroid plexus
 - First seen in 1st trimester
 - Disappear in third trimester

Choroid Plexus Cyst
Associated Abnormalities

- Seen in 1% of all pregnancies
- 50% of Trisomy 18 fetuses have CPC

Choroid Plexus Cyst
Management

- Always regress
- Targeted Ultrasound to r/o other abnormalities
- Isolated finding: excellent prognosis
- No pediatric follow-up indicated
Echogenic Cardiac Focus

Description

- Cardiac papillary muscle echogenicity
 - 78% left ventricle
 - 18% right ventricle
 - 4% Bilateral
- Occurs in 3-4% of all 2nd trimester fetuses
- Occurs in 9-12% Asian fetuses

Associated anomalies

- Increased risk of Trisomy 21 (LR 1.8)
 - Rarely clinically significant increase
- Look for other Trisomy 21 “markers”
- Increased risk of Trisomy 13
 - Never an isolated finding

Management

- Targeted ultrasound
- Isolated ECF almost always a normal finding
- No pediatric follow-up indicated
Mild Pelviectasis

Associated Anomalies

- Increased risk for Trisomy 21 (LR 1.6)
 - Not an important isolated marker
- Examine other Trisomy 21 “markers”
- Increased risk for Trisomy 13
 - Never an isolated finding
- Also weak association with turner’s Syndrome, XXX,Trisomy 8

Mild Fetal Pyelectasis

Issues with Prenatal Detection

- Precursor to renal pathology
- Allow prompt surgical correction to avoid irreversible damage to renal function
- Excessive follow-up
 - Increased medical expense
 - Overutilization of professional resources
 - Increase patient/family anxiety
- Uncertain postnatal follow-up

Mild Pelviectasis

Description

- Definitions
 - Pyelectasis
 - Transient or minimal hydronephrosis
- Ultrasound definition
 - >4cm AP diameter of renal pelvis 2nd trimester
 - >7cm 3rd trimester
- 3% of normal fetuses have MP
- 0.46% with MP have aneuploidy

Pyelectasis
Mild Pelviectasis

Prognosis

- Most cases are transient and idiopathic
- Postnatal workup if MP persists (RPD>7mm after 32 weeks)
- Causes
 - 48% transient
 - 15% physiologic (mild, nonprogressive)
 - 11% UPJ obstruction
 - 9% vesicoureteral reflux
 - 4% megaloureter
 - 2% multicystic dysplastic kidney disease
 - 2% ureterocele

Conclusions

- Prenatal detection important
- Excessive prenatal follow-up not indicated
- Postnatal follow-up indicated
 - 1st week
 - 1 month
 - 5% show pathology requiring surgery
 - Periodic ultrasound
 - Renogram
 - Antibiotics
 - Surgical intervention (few trials)

Summary

- Obstetrical Ultrasound has become an excellent tool for identifying structural anomalies in the fetus.
- Borderline anomalies are more difficult, but advancing technology allows increasing accuracy in detection.
- MRI has become an important adjunct to ultrasound. However, its precise role has yet to be determined.
- In utero detection allows appropriate postnatal follow-up and intervention.
- Evidence-based management is lacking.